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ABSTRACT

A NOVEL REAL-TIME INERTIAL MOTION BLUR METRIC WITH
APPLICATIONS TO MOTION BLUR COMPENSATION

Mutlu, Mehmet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Afşar Saranlı

Co-Supervisor : Assoc. Prof. Dr. Uluç Saranlı

August 2014, 70 pages

Mobile robots suffer from sensory data corruption due to body oscillations and mo-
tion disturbances. In particular, information loss in images captured with on board
cameras can be very high, may become irreversible or computationally costly to com-
pensate. In this thesis, a novel method to minimize average motion blur captured by
such mobile visual sensors is proposed. To this end, an inertial sensor data based
motion blur metric, MMBM, is derived. The metric can be computed in real time.
Its accuracy is validated through a comparison with optic-flow based motion-blur
measures. The applicability of MMBM is illustrated through a motion blur mini-
mizing system implemented on the experimental SensoRHex hexapod robot platform
by externally triggering an on board camera based on MMBM values computed in
real-time while the robot is walking straight on a flat surface. The resulting motion
blur is compared to motion blur levels obtained with a regular, fixed frame rate im-
age acquisition schedule by both qualitative inspection and using a blind image based
blur metric computed on captured images. MMBM based motion blur minimization
system, through an appropriate modulation of the frame acquisition timing, not only
reduces average motion blur, but also avoids frames with extreme motion blur, result-
ing in a promising, real-time motion blur compensation approach.
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ÖZ

ÖZGÜN GERÇEK ZAMANLI ATALETSEL HAREKET BULANIKLIĞI ÖLÇEĞİ
VE HAREKET BULANIKLIĞI GİDERME ÜZERİNE UYGULAMALARI

Mutlu, Mehmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Afşar Saranlı

Ortak Tez Yöneticisi : Doç. Dr. Uluç Saranlı

Ağustos 2014 , 70 sayfa

Mobil robotlar, gövde salınımları ve hareket bozucularından kaynaklanan algılayıcı
verilerindeki bozulmadan olumsuz etkilenirler. Özellikle robot üzerinde bulunan ka-
meralar ile kaydedilen resimlerdeki bilgi kaybı çok fazla olabilir ve bu bilgi kaybı
geri alınamaz yada resmin bulanıklığını az da olsa giderebilmek işlemsel olarak mas-
raflı olabilir. Bu çalışmada, mobil kameralar ile yakalanan resimlerde oluşan ortalama
hareket bulanıklığını azaltacak özgün bir yöntem önerilmiştir. Bu kapsamda, sadece
ataletsel veriler kullanılarak gerçek zamanlı hesaplanabilir hareket bulanıklığı ölçeği,
HBÖ, türetildi ve optik akış sonuçları ile karşılaştırılarak tutarlılığı onaylandı. HBÖ-
nün kullanışlılığını ifade edebilmek için SensoRHex üzerinde hareket bulanıklığını
aza indirgeyecek bir sistem yapıldı. Bu sistemde, düz bir zeminde ileri doğru giden
robot üzerindeki bir kamera gerçek zamanlı hesaplanan HBÖnün değerine göre ha-
rici olarak tetiklendi. Önerilen sistemle alınan resimlerdeki hareket bulanıklığı sabit
aralıklarla alınan resimlerdeki hareket bulanıklığı ile görsel değerlendirerek ve alınan
resimler üzerinden hesaplanan bir hareket bulanıklığı ölçeği ile karşılaştırıldı. HBÖ
tabanlı ve resim alma anlarının kontrol edilmesine dayalı hareket bulanıklığı azaltan
sistemin, ortalama hareket bulanıklığını azaltmakla kalmayıp, aşırı hareket bulanık-
lığına uğramış resimlerden de kaçınması, ümit vaat eden bir gerçek zamanlı hareket
bulanıklığı giderme yöntemi olduğunu ortaya koymuştur.
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We finished many collaborative works and they always made the countless hours I
spent in the lab enjoyable for me. I am in depth to my home mates Oğuzhan Zilci and
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

All mobile robots, with legged morphologies in particular, exhibit unpredictable body

oscillations due to their own structure and disturbances from their environment. For

dynamically dextrous legged robots such as RHex platform instances [31], these body

oscillations result from the robot’s own locomotory behaviors and are hence unavoid-

able. The similar oscillatory motions are not limited to robots and can be observed on

humans and many other camera carrying platforms.

These undesirable motion disturbances can degrade the performance of sensors mounted

on the robot. The performance of spatial optic sensors such as cameras are particu-

larly susceptible to ego motion, with angular disturbances having particularly signif-

icant effects on the quality of captured frames. The most significant distortion for

metrological images is the motion blur. Even though motion blur itself can be used

for useful tasks such as computing the motion, velocity and orientation of a camera

or objects [6], [20], or identifying whether an image is manipulated [11], it is usually

undesirable for applications requiring precise features to be extracted from images. It

is known that motion blur negatively affects many vision and image processing algo-

rithms, particularly those requiring feature extraction and tracking [28]. In [25], for

example, a bipedal robot is occasinally forced to stop so that frames without motion

blur can be obtained and features can be precisely located.

Fortunately, motion disturbances within certain applications may exhibit properties

that can be exploited. For example, dynamic legged robots performing stable lo-
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comotion on flat surfaces exhibit quasi-periodic body oscillations arising from limit

cycles associated with their behavioral primitives. In fact, many land-based mobile

robots are likely to exhibit such quasi-periodic trajectories in cross-sections of their

state space such as their body orientation and angular velocities.

Probabilistic estimation of a mobile robot’s location in the presence of noisy motion

and sensors has been a canonical algorithmic problem for robotics research. The

increasing importance of the visual sensor to provide diverse information and features

for a variety of tasks, not limited to localization/mapping puts increasing demands on

the quality of the image data acquired. Agile legged robot platforms on the other

hand pose particular difficulties for the camera sensor since the inherent time-varying

motion of the platform results in visual disturbances such as motion blur which can

in turn have a devastating effect on automatically computed image features. Popular

image features such as edges, Harris corners[9], SIFT[22] and FAST[30] are used as

a basis for a large number of estimation and visual perception algorithms. Motion

Blur which is a particularly severe motion induced distortion, makes it very difficult

and sometimes impossible to reliably compute these image features, resulting in a

chain collapse of downstream algorithms. We strongly believe that acknowledging

the presence of this distortion and development of algorithmic approaches exploiting

the properties of the application to compensate it are an important research direction.

As exemplified by nature, it is our belief that the vision sensor will have a dominant

role in the success of future robotic systems. This is also true for legged robots and

the importance is amplified particularly because these promise exceptional dexterity

and terrain mobility in unstructured environments. We therefore strongly believe in

developing theoretical and algorithmic approaches to improve the quality of the visual

data collected on a dextrous legged robotic platforms.

1.2 MOTIVATION

Motion blur in moving cameras has always been a problem especially when the move-

ment of camera is very fast and impulsive. While I was doing gait optimization exper-

iments with the six legged robot SensoRHex in RoLab and ATLAS, I tried to estimate
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the position of robot online by solving external calibration parameters of an onboard

camera. In this approach camera is taking images of a landmarks on the scene whose

global world coordinates are known. I was able to calculate the location of robot using

the homographic approach in computer vision techniques. However some of the cap-

tured images were extremely blurry and information loss was very high that extracting

landmarks on the images were impossible. An exaggerated example for the scenario

I encountered can be seen in Fig. 1.1(a). There are ways to reduce amount of motion

blur. Reducing the exposure time reduces the motion blur since it is directly propor-

tional to the motion blur amount. Longer the sensor accumulates photons falling on

a moving camera, higher the motion blur amount. Lower exposure times result in

darker images, because, amount of light for one image shot would not be enough.

One possible way to have acceptable images with low exposure times is increasing

the ambient light. The light conditions may not be controllable for every scenarios. It

is still possible to lighten images by multiplying whole pixel readings with a constant

gain factor. But, the main problem is the signal to noise ratio. Capturing an image

with low exposure rates means noisier images as seen in Fig. 1.1(b). That type noise

is usually referred as the salt and pepper noise.

(a) (b)

Figure 1.1: Adjusting camera parameters is not always a solution. (a) Increasing

integration time increase SNR but motion blur also increases. (b) Taking images with

low exposure time results in low Signal to Noise Ratio (SNR).

The main observation lead to the work done in this thesis is that some of the cap-

tured images during gait experiments of SensoRHex were very blurry while some

others were quite sharp. Six image samples captured during the straight locomotion
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of SensoRHex can be seen in Fig. 1.2. Some of those images are sharp (Fig. 1.2(a),

Fig. 1.2(e)) some of them are very blurry (Fig. 1.2(b), Fig. 1.2(d)) and the blur level

on the others are moderate. Exploring the reason behind this observation was the

starting point of this work. That exploration lead to the derivation of relation between

camera motion and the resulting amount of motion blur.

1.3 METHODOLOGY

The main objective of this thesis is to derive and analyse a metric that relates camera

motion to the corresponding motion blur in images that will be captured by a moving

camera. Although such a metric can be calculated from captured images using image

processing techniques, the aim is to have an intuition of how much motion blur there

will be on image. Hence, the metric should incorporate sensors other than a camera

itself to measure motion of a camera. One of the common ways of tracking motion is

using inertial sensors such as accelerometers and gyroscopes. In this study, angular

velocity measurements are used to derive the motion blur metric.

An important criteria is that such detection and measurement pre-processing should

be computationally inexpensive to be implemented in real-time with minimal delay.

Even though, final analytical calculations are not possible, a Riemann Sum approxi-

mation is adopted to calculate the value of the metric.

Once such a motion blur metric is obtained, it can be used to track the motion blur

of images even before the image is captured. This information can be used to in a

variety applications such as detecting an image is extensively blurred or modulating

the image acquisition moments by delaying the image capture triggering signal to

obtain sharper images. Minimizing corruptive effects of motion blur increases the

performance of computer vision algorithms that require feature extraction.

Metric is illustrated in detail by analyses done in MATLAB environment. A hardware

setup consisting of a gyroscope, a camera and a microcontroller is created to collect

real data on SensoRHex. Further analyses are done using the real data. Moreover,

the same hardware setup is used to trigger the camera externally to modulate image

acquisition instances depending on the value of real-time calculated metric.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Consecutive video frames captured with an onboard camera while Sen-

soRHex is walking on a flat surface. The sequence illustrates interleaved blurred and

sharp images.
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1.4 CONTRIBUTIONS

The present study focuses on robot platforms with large magnitude, time-varying ego-

motion such as the case for dynamically dextrous legged robots. A good example

is the popular RHex morphology: a hexapod with exceptional terrain mobility[31].

An example of RHex morphology, SensoRHex, can be seen in Fig. 1.4 which is ac-

tively used for experiments in RoLab Other recent examples are dynamically dextrous

quadrupeds developed by Boston Dynamics[29]. We consider the most significant

motion induced visual degradation, the motion blur, and present an approach to gen-

erate a camera data stream with a significantly reduced motion blur content. This is

achieved with data from inertial sensors (gyroscopes) and through active control of

the camera image acquisition cycle, in particular the frame trigger timing. The pri-

mary contributions of the thesis are threefold: Firstly, we propose a novel blur met-

ric based on transformed inertial measurements to track the blur in the image. Sec-

ondly, the metric is used to modulate image acquisition instances to avoid extremely

blurred images. Finally, we successfully apply this metric in position measurement

task where individual frame based measurements are significantly improved, paving

the way for improvements in pose estimation problems.

Figure 1.3: SensoRHex is walking on a flat surface.

Clearly, the exact amount of motion blur on the camera image plane depends on the

camera motion during the exposure period. Even though external object motion also
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contributes to motion blur, our focus in this work is on dominant ego motion that

corrupts the entire frame with motion blur. Our hypothesis is that the predictability

of quasi-periodic body oscillations of a legged robot can be exploited to avoid expo-

sure periods where excessive motion blur is expected to corrupt the image. Even by

incorporating a simple avoidance strategy on the timings of frame capture, motion

blur can be reduced on the average and excessive motion blur can be avoided. On

favorable surfaces where body oscillations become more predictable, the benefits can

be increased by signal prediction approaches. The most fundamental step in apply-

ing such a technique for improving motion blur performance for a video stream is to

have a motion blur metric that can be computed in real-time. Consequently, a primary

contribution of our paper is the derivation of an average motion blur metric, which

we call the Motion based Motion Blur Metric (MMBM), based on inertial motion

measurements obtained through a gyro.

1.5 OUTLINE OF THE THESIS

The thesis is organized as follows: Chapter 2 begins by presenting relevant litera-

ture for our study, followed by Section 3 where our new motion blur metric based on

angular velocity measurements and all camera motion measurements are presented.

Chapter 4 provides further analysis on sensitivity of metric for all parameters used in

the metric derivation and how to calculate the metric in real time. Chapter 5 gives dis-

cussions on different possible ways on how to use the proposed metric and details of

the usage of metric for image acquisition. Experimental results for obtaining sharper

images and the implication of those images are presented in chapter 6. Finally, chap-

ter 7 gives the concluding remarks.
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CHAPTER 2

LITERATURE REVIEW

Motion blur is a very common problem that many researchers attacked to the prob-

lem from many different perspectives. The proposed solutions in the literature can

be divided into two main groups in terms of their approach to deal with motion blur.

Software based approaches focus on removing the motion blur from images after it

is captured. Some other approaches are also considered in software methods, even

though, they may make use of complementary sensors and hardware and their tech-

niques to remove the motion blur may significantly differ from each other. On the

other hand, hardware approaches mainly try to stabilize the camera motion when im-

ages are desired to be captured with a mobile camera.

2.1 MOTION BLUR REMOVAL; SOFTWARE BASED POST PROCESSING

Software based motion blur removal techniques primarily focus on individual frames

only after an image is captured with motion blur [27]. Many of them use only single

image to resharpen it. The downside of single frame software methods is that the

deconvolution operation is ill-defined since some of the information is permanently

lost due to the nature of motion blur. Although, fast deblurring algorithms that can be

executed online [3], deconvolution techniques are usually computationally costly as

well and may be difficult to implement in real-time applications [32].

Inertial and visual sensors can act as complementary pairs [5], with inertial sensors

used to obtain extra information on motion. Using inertial sensors the Point Spread

Function (PSF) can be estimated. PSF is a kernel which describes the motion blur and
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gives the blurred image when convolved with a sharp one. PSF knowledge is essential

for deblurring. It can be estimated with inertial sensors [13] or with a complemen-

tary camera [24]. Hence, “non-blind” deconvolution can be applied for deblurring as

a better alternative to blind deconvolution. Deconvolution on image domain is not

well defined like the convolution operation. Common implementation of deconvo-

lution involves search of sharp image in pixel domain. In yet another application, a

camera is precisely moved in a carefully designed way to modify the PSF to increase

performance of motion deblurring with deconvolution [19]. The downside of this ap-

proach is that first it needs to blur whole image even if the camera is not mounted

on a mobil platform and only motion blur caused by a moving object is desired to

be removed. Although, it can successfully remove most of the motion blur, there re-

mains some artifacts on the background scene. Also, estimating motion from inertial

sensors makes a good initial guess for parameter estimation for deblurring or feature

extraction algorithms [14].

Camera shutter hardware control, is also used in certain applications to compensate

for motion blur. The simplest solution is limiting exposure time, but the image SNR

decreases due to the reduced amount of light integration. Special lighting is usually

required for this approach to be successful. Light integration pattern can be manipu-

lated to minimize deconvolution noise [1] by using coded exposure technique. Fusion

of frames which are exposed at different durations on the same scene can also be used

to reduce motion blur [39]. However, the computational complexity is a considerable

burden of these approaches especially when they are used on low power autonomous

mobile robots.

2.2 MOTION BLUR AVOIDANCE; HARDWARE SOLUTIONS

Hardware methods are widely used by camera manufacturers. High end commercial

cameras use lens or sensor motion techniques for image stabilization. The theory

behind lens stabilization technique is moving lens [35] in a plane to ensure photons

emitted or reflected from fixed objects fall upon the same region of camera sensor.

The other method also uses the same idea, but, lens remains stationary and sensor is

moved to compensate the motion of camera [17].
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Another commonly used hardware solution is mounting the camera on top of a sta-

bilization platforms. Gimballed platforms, have rotary structures that are connected

to each other with actuators and they can cancel the rotations exhibited on main body

such that camera would not rotate [18]. Stewart platforms and their variants are com-

monly used for line-of-sight stabilization [10], [2]. Stewart platform is a well ana-

lyzed and commonly used mechanism to move a platform in both 3D rotation and

3D translation. Thus, it can move to all positions and orientations in its obstacle-free

workspace. Such platforms are usually mechanically complex, costly and often re-

quire advanced control algorithms. Moreover, robust pose estimation is required for

stabilization platforms, but, a challenging problem for highly dynamic robots due to

inertial measurement drift [33]. It may be difficult to use Stabilization platforms on

small scale robotic platforms due to their size, weight and effects on robot dynamics.

However, size and weight issues can be solved by designing a custom stabilization

platforms. For example a stabilization platform that is designed to be used on mobile

robot applications can be seen in Fig. 2.2. As an alternative to mechanical stabiliza-

tion platforms optic flow based stabilization can be used [12].

Figure 2.1: 3D rotary motion stabilizing platform designed in RoLab.

2.3 OUR METHOD

Our approach to tackle motion blur involves deriving a novel real-time metric using

three-axis gyroscope measurements to predict motion blur that would result from the

rotational motion of the camera. This metric is then used in a setup to reduce average

motion blur while capturing a video sequence.
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Although there were attempts to map motion of camera to the motion blur formation

[26], there is a lack of motion blur metric in the literature. One of the techniques seen

the literature uses the magnitude of an acceleration vector obtained from a MEMS

bases inertial measurement unit to detect whether a barcode reader is moving or not

[21]. Even inclenometers are used to detect whether camare moves or not [40]. The

approaches only tries to detect whether motion exists. Actual motion blur requires

the measurement of actual motion.

In order to minimize average motion blur, our proposed method is triggering the cam-

era at suitable time instances. Some conceptual ideas about having a motion blur

metric are discussed in [36]. One of the implementations give a fixed delay if motion

is detected [16]. A more advanced one also limits maximum exposure time if motion

blur is detected [34]. The possibility of terminating image capture is claimed in [37].

One of the promising applications that exploit oscillatory behaviour of camera is pre-

sented in [41]. Their approach is estimating the position of camera and capturing

images while camera is passing thorough the same locations such that jitter caused

by the oscillatory motion of camera can be avoided. Our study has many common

discussions with the commercially applied techniques, yet, we address unanswered

parts in those works.
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CHAPTER 3

INERTIAL MEASUREMENT BASED MOTION BLUR

METRIC DERIVATION

Exact motion blur that occurs due to robot ego motion can only be extracted by mea-

suring translation and rotation of camera throughout integration time, namely the

duration for which camera integrates light [7], [4], [24]. The focus of this thesis is on

estimating the average magnitude of motion blur on the image plane at any given time

such that sharper images can be obtained by triggering the camera at favorable time

periods. The primary observation that enables such an opportunity is that a legged

robot has a considerable inertia which will force the robot to have attitude oscillations

with a predictable low-pass character. Hence, there will be repeating time instances

where the body velocity will be small and these times can be predicted short-time in

advance.

The major causes of motion blur are angular and translational velocities of a camera

around three axis. Motion blur can also be caused by moving objects in a stationary

scene, an unstationary scene or the zoom event of a camera. In order to be able to

analyze the complete motion blur all of the aforementioned causes should be known

or they should be extractable from an image or sequence on images. It was already

explained that whole motion blur can mostly be extracted from captured images using

image processing techniques. Even though, knowing the motion blur after an image

is already blurred can be useful to resharpen it, the aim in this work is to predict the

motion blur before capturing an image. In this context, scene, objects in the scene and

zoom factor of the camera are assumed to be fixed and only the motion blur caused

by the egomotion of a camera is aimed to be avoided by exploiting quasi-periodic
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behavior of walking.

Derivation of a metric to estimate the motion blur amount in an image that will be cap-

tured requires the instantaneous rotational and translational velocity measurements of

a camera. Projected locations of fixed world points on the image sensor depends

on only the relative angle of those points with respect to the pinhole when camera

undergoes only the rotation motion. Rotational velocity can be directly measured

with a gyroscope. In the translation case, finding projected velocities of fixed world

points requires the depth of scene information in addition to the pure linear veloc-

ity of the camera. Measuring pure translational velocity is not as straight forward as

obtaining the rotational velocities. There are two common methods. The first one

involves measuring the linear acceleration of the camera with an accelerometer and

taking its integral. However, commercially available accelerometers have a certain

error characteristics and taking the integral of those errors is likely to drift the in-

tegrated velocity measurements. The second method is tracking the location of the

camera with a camera based external tracking system and extracting the velocity of

the robot by taking the derivative of the position. Although, the latter method does

not accumulate errors, the derivative operation is more susceptible to measurement

variations caused by noise. Furthermore, including the translational motions to the

metric requires the depth of scene information which has to be measured with a depth

sensor such as kinect, laser scanner or an external tracking system. Another observa-

tion is that, when camera is used in a large workspace, the depth of scene is usually

quite large. Translational variations of a camera is less dominant when the scene is

far away form the camera. Due to the dominance of rotational motions on the motion

blur formation and ease of real implementation, first the motion based motion blur

metric will be derived by considering only the rotational motion of the camera and

the effects of translational motion will be analyzed later on.

3.1 ROTATION MOTION BASED MOTION BLUR METRIC (MMBM)

MMBM derivation for pure rotational motion consists of modeling the motion blur

formation process on the image plane and computing a scalar metric out of it. In the

present case, MMBM only considers instantaneous angular velocities, transforming
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them through the projective transformation onto the image plane rather than consider-

ing the entire integration time [23]. If the rotational velocities remain constant during

exposure time, MMBM becomes a better approximation to the actual motion blur.

3.1.1 Notation

In the pure rotational scenario, there is a camera pointing through a stationary scene

and the camera rotates in all there axes. The variables used on MMBM derivation are

illustrated in Fig. 3.1. World and image coordinate frames, a fixed point on the real

world, its projection on the image plane, rotational velocities and focal length of the

camera are denoted by (X,Y,Z), (U,V), (x,y,z), (u,v), (wx, wy, wz) and f respectively.

Y

X

Z

U

V

wz

wx

wy

(x,y,z)

(u,v)

f

Figure 3.1: Illustration of frames and definitions used in the derivation of the MMBM.

3.1.2 Average Flow Derivation

The main principle behind deriving a motion blur metric is deriving the velocity trans-

formation from camera motion to the projected points motion on image sensor plane.

Once the relations are obtained the desired metric will be the average of instantaneous

variations on image sensor.
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3.1.2.1 Camera Model

A basic pinhole camera model is used for modeling the camera projection.u
v

 =

f
x

z

f
y

z

 (3.1)

Respectively, u and v represents x and y coordinates of image plane. In homogenous

coordinates, basic pinhole camera matrix, P, can be written as follows:


u

v

1

 =


f
x

z

f
y

z

1


= P


x

y

z

1

 =


f 0 0 0

0 f 0 0

0 0 1 0



x

y

z

1

 (3.2)

Now, the relation between world coordinates and image plane coordinates is known.

Inverse camera model assumes Z is known and it turns out to be as follows:


x

y

z

 =


z
u

f

z
v

f

z


. (3.3)

3.1.2.2 Intrinsic and Extrinsic Camera Calibration Matrices

In the metric derivation, camera is assumed to be pre-calibrated, so, intrinsic camera

parameters such as distortion are not included in the final form of the metric since the

aim was to keep the metric as simple as possible. But, the camera model can be im-

proved further by considering finite projective camera model and camera calibration

matrices.

Intrinsic calibration matrix, K, can easily be used instead of the basic pinhole camera

matrix P.

K =


ax s x0

0 ay y0

0 0 1

 (3.4)
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In the K matrix, ax = f ∗mx ; ay = f ∗my ; x0 = mx ∗ px and y0 = my ∗ py. mx

and my represents number of pixels per unit distance in image coordinates. px and

py shows principal point offset of a camera. Finally, s is the skew parameter. Exact

motion blur on images are actually a parameter of all distortions. However, tracking

only the main trends will be sufficient for the derivation of a general purpose metric.

Moreover, images can be calibrated independently and the metric derived without

considering the intrinsic calibration would work.

External calibration gives camera frame location and orientation with respect to a

known world frame as shown in Fig. 3.2. The extrinsic calibration matrix is calculated

as, 
xcam

ycam

zcam

1

 =

R −RC̃
0 1



x

y

z

1

 . (3.5)

In this study, extrinsic calibration is also not needed. Camera can be simply assumed

to be at origin of the world coordinate frame.

ycam

xcam

zcam

X

Y

Z

C

O
R, t

Figure 3.2: Illustration of extrinsic camera calibration.

3.1.2.3 Velocity Relation

The metric that will be derived aims to predict the motion blur. The exact camera

motion will not be available prior to the image capture, but, the rotational velocity of
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the camera can be measured and the projected velocity of fixed world points on the

image sensor can be extracted. Time integration of projected points velocity on image

sensor, would give the exact motion blur. Under the assumption that camera velocity

will remain constant during the exposure period, the velocity of the projected points

will give a relatively accurate representation of the motion blur. Time derivative of

the projected points on the image coordinates can be found by taking the derivative

of the pinhole camera model:

d

dt

u
v

 = f


ẋz − xż
z2

ẏz − yż
z2

 =


f

z
0 −fx

z2

0
f

z
−fy
z2



ẋ

ẏ

ż

 . (3.6)

For the name convention following matrix will be called as L.
f

z
0 −fx

z2

0
f

z
−fy
z2

 = L (3.7)

Rotation of the camera with respect to its focal point on a stationary environment is

analogous to rotating whole world around a fixed camera in terms of mathematical

derivations. The latter approach can be easier to visualize. The only difference is the

sign of the rotation matrix w. The velocity of a point in the scene when the scene

is rotating around the fixed camera with respect to an arbitrary vector, w, that passes

through the focal point of the camera is defined as

Ṗ = W × P, (3.8)


ẋ

ẏ

ż

 =


0 −wz wy

wz 0 −wx

−wy wx 0



x

y

z

 . (3.9)

3.1.2.4 Definition of Rotation Motion Based Motion Blur Metric (MMBM)

Obtaining the averaged optic flow that is caused by the rotary egomotion of a camera

requires the integration of instantaneous image plane optic flow vector magnitudes
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caused by camera rotation at inertial measurement time instance. This leads to the

definition of MMBM in vector format as

µ :=
1

∆u∆v

umax,vmax∫∫
umin,vmin

∥∥∥∥∥∥u̇v̇
∥∥∥∥∥∥ dvdu. (3.10)

(3.11) can be written in open form

µ :=
1

∆u∆v

umax,vmax∫∫
umin,vmin

√
u̇2 + v̇2 dvdu, (3.11)

where ∆u and ∆v are defined as (umax−umin) and (vmax−vmin) respectively. µ can

be used to track the average motion blur and from now on it will be the rotary mo-

tion based motion blur metric (MMBM). As seen in (3.10) MMBM does not involve

any time integration. It calculates instantaneous average magnitude of the projected

points’ velocity vectors.

Inserting (3.6), (3.9) and (3.3) respectively into instantaneous optic flow vector in

(3.10) to be able to explicitly evaluate the integral, the following relation is obtained,

u̇
v̇

 =


f

z
0 −u

z

0
f

z
−v
z




0 wz −wy
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u

f

z
v

f

z


. (3.12)

Negative rotation matrix is used in (3.12) since the world point is stationary and cam-

era is rotating in the problem. The relation given in (3.12) can be evaluated to obtain

u̇ and v̇,

u̇
v̇

 =


f

z
0 −u

z

0
f

z
−v
z




zwz

f
v − wyz

−zwz

f
u+ wxz

zwy

f
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zwx

f
v


=

+wzv − wyf −
wy

f
u2 +

wx

f
uv

−wzu+ wxf −
wy

f
uv +

wx

f
v2

 .
(3.13)

After obtaining u̇ and v̇ separately, euclidian norm of the projected points velocity

vector can easily be found; ∥∥∥∥∥∥u̇v̇
∥∥∥∥∥∥ =
√
u̇2 + v̇2. (3.14)
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Individual components of (3.14), u̇ and v̇, are evaluated as
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and
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Then the open form of u̇2 + v̇2 turns out to be

u̇2 + v̇2 =
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(3.17)

Although, (3.17) has a neat structure, (3.11) cannot be analytically evaluated due to

the square root that is inside of the double integral. A common approach that is

used in optimization techniques is taking the square of the euclidian norm in (3.11)

thus integral can be analytically solvable. However the aim of MMBM is to model

the motion blur from the rotational velocities of camera as accurately as possible.

Therefore, (3.11) will be evaluated with numerical methods such as ode45.
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3.1.3 Visualization of MMBM

Fixed points in the scene are projected onto the image plane through the camera

model. Projected points trace a certain trajectory on the image plane when camera

undergoes a rotation around its optical center. Our proposed metric takes into account

only instantaneous velocities of projected points. MMBM is actually a continuous

integral throughout image plage as stated in (3.11). But, drawing down sampled

image plane velocity vectors helps to understand the mechanics of MMBM. Fig. 3.3

illustrates projected velocity vectors for some uniformly sampled function evaluation

points throughout the image plane when camera rotates. 640x480 pixel sensor plane

having unit pixel size is 4.65µm is represented in metric units.

In Fig. 3.3(a) camera is subjected to 1.0rad/sec rotation in only wx. In order to give an

intuition about how much blur that rotation would cause on an image that is captured

in 50ms, the resulting vector sizes are multiplied with to 1000/50 before plotting

them on Fig. 3.3. Projections of fixed world points are moving up on the image plane.

Magnitudes of those vectors get slightly larger around the upper and lower edges

of the sensor plane. Also the direction of movements slightly change around right

and left edges since the sensor is planar. Although, all commercial image sensors

are currently planar, hemispherical ones that mimics human eye [15] are also likely

to appear in the coming years. If the image sensor was hemispherical, projected

velocity vectors caused by camera rotation inwx axis could have been perfectly linear.

Fig. 3.3(b) shows the velocity vectors of projected points when camera undergoes 2.0

rad/sec roll motion which is rotation in wz direction. Compared to rotation in yaw

and pitch axes, rolling motion has completely different effect on motion blur. In

the pure rolling case, center of the image would never have any motion blur. Even

the fastest points, which are around the edges of sensor plane, are a number of times

slower than average magnitude of velocity vectors observed in the same yaw and pitch

rotation speeds. Please note that wz in Fig. 3.3(b) is 2 times faster compared to wx in

Fig. 3.3(a). Hence, roll has less significant effect on motion blur compared to pitch

and yaw. Roll, yaw and pitch components can be independently considered and added

on top of each other to get cumulative result. Fig. 3.3(c) shows the resulting velocity

vectors when camera is rotated in yaw and roll axes and Fig. 3.3(d) illustrates the
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resulting vectors when camera rotates in all axes at the same time. MMBM calculated

from a single gyro reading is magnitude average of vectors as shown in Fig. 3.3 for

four different rotation case.
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Figure 3.3: Velocity vectors of projected points on image sensor subjected to different

camera rotational velocities. Rotational velocity vectors of the camera, [wx wy wz] in

rad/sec, (a) [1.0 0 0], (b) [0 0 2.0], (c) [0 0.5 5.0], (d) [0.5 0.5 1.0].

Gyro data can be collected at high frequencies while robot is moving and MMBM can

be calculated for each gyro measurement. Fig. 3.4 illustrates the calculated value of

MMBM for each 3D gyro measurement for a slightly longer duration than 2 seconds.

It can be seen that rotation in z axis has lesser effect on motion blur formation when

compared to rotations in x and y axes.
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Figure 3.4: Variation of MMBM compared with individual rotational velocities while

SensoRHex is walking on a flat surface.

3.2 CAMERA ROTATION AND TRANSLATION MOTION BASED MOTION

BLUR METRIC (tMMBM)

In the previous section, a metric to track motion blur amount caused by the rotation

motion of the camera was derived and explained. The assumption was that translation

would have very little affect on motion blur formation when the robot is working in

a large and free space. In other words, objects that the camera is observing will be at

least a few meters away from it. Furthermore, the difficulty of measuring translational

velocities of a mobile robot was much more challenging than measuring the rotational

velocities. In this section, the translation motion of the camera will be added to the

derivations done in the previous section. Then, the effects of the translation and be

discussed and the cases where translation motion should be used will be analyzed.

3.2.1 Notation

In the whole camera motion scenario is an extension to the pure rotational case where

camera both rotates and translates in all there axes. The variables used on tMMBM

derivation are illustrated in Fig. 3.5. World and image coordinate frames, a fixed

point on the real world, its projection on the image plane, focal length, rotational and
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translational velocities of the camera are denoted by (X,Y,Z), (U,V), (x,y,z), (u,v), f,

(wx, wy, wz) and (vx, vy, vz) respectively.

Y

X

Z

U

V

wz

wx

wy

(x,y,z)

(u,v)

f

vy
vx

vz

Figure 3.5: Illustration of frames and definitions used in the derivation of the

tMMBM.

3.2.2 Motion Based Motion Blur Metric Derivation

Approach in the derivation of tMMBM is pretty much similar to the derivation of

MMBM. The same assumptions, e.g. not including intrinsic and extrinsic calibration

matrices etc., also hold for the tMMBM. The definition of the tMMBM is still the

same as the definition of MMBM, which was shown in (3.11). The only difference is

that camera can also freely translate in the current derivation. Hence, the derivation

of tMMBM will be the same until (3.12). Only the velocity vector of camera changes.

As explained in Section 3.1.2.3 motion of camera is analogous to the motion of scene.

In other words, in a setup where camera is moving in a stationary environment, cam-

era can be considered to be stationary and the whole scene, or simply the point of

interest on the scene, can be considered to be moving with the same speed which

camera should move, only through the reverse direction of the camera. The velocity

vector of the scene while camera is moving turns out to be
ẋ

ẏ

ż

 =


0 −wz wy

wz 0 −wx

−wy wx 0



x

y

z

+


vx

vy

vz

 (3.18)

where vx, vy and vz are the translational velocities of camera in free space.
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Inserting the translational motion of the camera to the (3.13) yields the following

projected velocities of the scene:

u̇
v̇

 =


f

z
0 −u

z

0
f

z
−v
z




0 wz −wy

−wz 0 wx

wy −wx 0



z
u

f

z
v

f

z


+


f

z
0 −u

z

0
f

z
−v
z



−vx
−vy
−vz

 .
(3.19)

When (3.19) is further evaluated the following open form is obtained,

u̇
v̇

 =

+wzv − wyf −
wy

f
u2 +

wx

f
uv

−wzu+ wxf −
wy

f
uv +

wx

f
v2

+

−
f

z
vx +

u

z
vz

−f
z
vy +

v

z
vz

 . (3.20)

The most striking changes between MMBM and tMMBM are the dependency of

scene depth information and requirement to measure translational velocities of a cam-

era as shown in the last matrix of (3.20). Both of them can be measured with sensors,

however, they increase the complexity of the motion blur detection system.

After obtaining u̇ and v̇ of tMMBM separately, euclidian norm of the projected points

velocity vector was given in (3.14) and individual components of (3.14), u̇ and v̇, can

be evaluated and the resulting forms will involve a two variable integral that cannot

be solved analytically, but still can be evaluated with numerical methods. Instead

of explicitly calculating individual components of the euclidian norm that is given

in the tMMBM definition, first , calculating numerical values of u̇ and v̇ and, then,

calculating the euclidian norm is less computationally expensive.

3.2.3 Visualization of tMMBM

Any motion of camera causes displacement of projected stationary world points on

camera sensor. It is valid for both rotational and translational motion of the camera.

Although the rotational motion is scene depth independent, the motion blur induced

by the translational motion highly depends on the distance between the camera and

the scene.
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Individual optical flow vector samples taken at predetermined sensor pixels for a

translating camera are illustrated in Fig. 3.6. In this figure, camera is assumed to

be pointing towards a flat surface that is perpendicular to the roll axis of a camera and

the distance between camera and the surface in the scene is assumed to be 0.5m. The

camera properties are the same as the camera model used to illustrate MMBM. Cam-

era resolution is set to 640x480 pixels and each pixel has square shape with 4.65µm

edge size.

In Fig. 3.6(a) camera is subjected to 0.5m/sec translation in only wx. In order to give

an idea about an image captured with 50ms exposure time the resulting vectors are

scaled with 50/1000. Since camera is moving linearly on x axis only, the resulting

vectors have the same magnitude and direction throughout the camera sensor plane.

The similar behaviour is also observed in the y axis as seen in Fig. 3.6(a). The only

difference is the direction of the optical flow vectors. The magnitude of optical flow

vectors are relatively comparable to the ones examined in the MMBM case. How-

ever, the main reason is the distance of the scene. All rotational and translational

velocities that are used to visualize optical flow vectors are chosen slightly larger

than maximum values observed on SensoRHex while it was walking in the fastest

mode on flat concrete surface. But the scene depth is usually much deeper than 50cm

that is used in Fig. 3.6. Deeper the the scene goes, smaller the optical flow vectors,

that are caused by the translation motion, become. Hence, the motion blur caused by

the translation motion remains bounded at negligibly small values. But still, having

comparable sized vectors is better in terms of illustration purposes.

The affect of approaching or getting away from the surface that the camera is pointing

through has a completely different characteristic. The type of motion blur that it

creates resembles the zooming related motion blur. Fig. 3.6(c) shows the optical flow

vectors when camera is 50 cm away from the surface that it is pointing and camera is

moving away from the scene. More specifically, camera is moving at -2m/s on z axis.

Similar to the roll motion of the camera, the pixels in the middle of the image suffer

less motion blur whereas the ones near the edge of the camera sensor exhibit more

variation, i.e. larger optical flow vectors. It is noteworthy to notice that the effect of

motion along the z axis has recessive effect on motion blur. Even though the camera

in Fig. 3.6(c) moves four times faster than the camera in Fig. 3.6(a) and Fig. 3.6(a).
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Figure 3.6: Velocity vectors of projected points on image sensor subjected to different

camera translational velocities when camera is 0.5m away from the scene. Transla-

tional velocity vectors of the camera, [vx vy vz] in m/sec, (a) [0.5 0 0], (b) [0 0.5 0],

(c) [0 0 -2], (d) [0.5 0.25 -2].

27



The combined motion blur can be decomposed into individual components in terms of

motion causing the blur along each axis. All six degrees of motion can be calculated

separately and the combined motion blur can be calculated by taking the sum of all

optical flow vectors. Fig. 3.6(d) shows a sample of optical flow vector set that is

caused by pure translational motion in all three axes.

The cumulative motion blur for both translation and rotation can be very complex. For

example, Fig. 3.7(a) shows the corresponding optical flow vectors for the combined

motion shown in Fig. 3.3(d) and Fig. 3.6(d). Scene depth is kept 50 cm. Similarly,

the Fig. 3.7(b) is the result of combined motion from rotational velocity of Fig. 3.3(d)

and half of the translational velocity in Fig. 3.6(d). Although, motion in one of the

axes will dominate the others in most of the cases, motion blur such as Fig. 3.7(a) and

Fig. 3.7(b) may occur.
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Figure 3.7: Velocity vectors of projected points on image sensor subjected to all type

of camera motion. Velocity vectors of the camera, [ωx ωy ωz vx vy vz] in m/sec, (a)

[0.5 0.5 1 0.5 0.25 -2], (b) [0.5 0.5 1 0.25 0.125 -1].

The relation between translational velocity vectors and tMMBM will not be given at

this moment since the dependency on the scene depth is a dominant variable of the

tMMBM. But the analysis of scene depth will be covered in detail in the next chapter

where the effects of all parameters will be analyzed. Although, tMMBM refers to the

metric that also involves translational motion of the camera, in the following sections

tMMBM will be used to identify both MMBM and tMMBM since the major con-

tribution will be shown to arise from MMBM and adding the translational velocity

measurements unnecessarily complicate the experiments.
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CHAPTER 4

ANALYSIS OF THE (MMBM) MEASURE

MMBM is a metric that gives a quantitative value for the amount of motion blur that

will occur on an image due to egomotion of camera. There are three problems that

needs to be addressed; (i) Does the derivations of MMBM really give information

about motion blur?, (ii) How can MMBM be calculated in real time? and (iii) How

does MMBM is affected from measurement noise. Following sections will answer all

of the questions respectively.

4.1 MMBM VALIDATION

MMBM is based on the calculation of the optical flow vectors using inertial measure-

ments instead of using two consecutive images. The assumption of constant velocity

motion from the inertial measurement instant to the end of the exposure time make

the optical flow comparable to the actual motion blur. Under the assumption of con-

stant camera rotational velocity, MMBM is proportional to the average of optical flow

vector magnitudes. The whole theory of MMBM that is previously explained in the

previous chapter is based on the relation of optical flow and motion blur. Hence,

MMBM should give consistent results with conventional optical flow calculation al-

gorithms found in the literature. The relation and differences of optical flow and

MMBM will be examined in this section.

In order to validate the metric, a hardware setup consisting of a camera, a 3D fiber-

optic gyro and a PC was built to collect datasets. The translational motion of camera

is considered to be negligible in this case. Camera and gyro axes were matched
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with a fixture, but no calibration was done to obtain further alignment information.

Using the handheld hardware, time synchronized image frames and gyro data samples

were collected in the PC. Then, the method proposed by [38] was used to calculate

the optical flow between all successive frames on the collected images. Two of the

successive images from the data set are shown in Fig. 4.1.

(a) (b)

Figure 4.1: Two successive images from the sequence recorded to validate the

MMBM.

The result of an optical flow calculation for two consecutive images is a vector field

that shows how much each pixel moved from the first image to the second one. For

example, color coded optic flow field between Fig. 4.1(a) and Fig. 4.1(b) is shown in

Fig. 4.2(b). Direction and intensity of optic flow vectors can be visualized with the

help of the color map given in Fig. 4.2(a). Colors in the map are mapped to polar

angles which optical flow vectors point through. For instance, red means a pixel is

moving through east and yellow means the pixel moves through south. Moreover,

intensity of each color gives normalized magnitude of movement in optical flow field.

In order to compare MMBM with optical flow the algorithm, average magnitude of

optic flow (AMOF) vectors are calculated for each consecutive image frame. In other

words, the magnitude of optical flow vectors for each pixel is averaged for the im-

age sensor. AMOFs are then compared with MMBM values calculated from gyro

data only. Optic flow algorithms assume that the exposure times of input frames are

infinitesimal. So, instead of using the trigger instant, mid-exposure time is used to

time-stamp each input image. The resulting output actually shows the displacement

of each pixel. Although, MMBM convert instantaneous velocities of camera to ve-

30



locities of moving pixels, under the assumption of constant velocity during exposure

time of camera, AMOF is expected to be comparable to MMBM. The relative scales

of MMBM and AMOF are actually different since they are two different quantities.

The main objective of validation is comparing the time behavior of two waveforms

since both give an idea about the magnitude of motion blur under aforementioned

assumptions.

(a) (b)

Figure 4.2: Optic flow field from images in Fig. 4.1: (a) The actual optic flow field,

(b) optic flow color and direction map.

Comparison of MMBM and AMOF is shown with two different data sets. The first

data set was collected with the camera rotating around the yaw axis and rotations on

other axes negligibly small. Note that data sets also include a small amount of trans-

lation movement since they were collected with handheld hardware. Since the target

is at a reasonable distance, the projection of translational movement onto the image

plane was assumed to be negligible. The results for the first data set is illustrated in

Fig. 4.3. The camera motion is this data set mainly consists of yaw rotation. The

plot show that MMBM and AMOF waveforms have closely matching behavior. Ex-

tremum points on both waveforms are very close to each other. Note, also, that the

sampling rate of the gyro (approx. 600Hz) and the camera (approx. 12fps) are very

different. This is the reason why the MMBM plot seems to be continuous and AMOF

does not. Red dots on the AMOF plot correspond to mid points of time durations that

are previously explaines in this section. AMOF data can only be calculated on the red

dots, with the rest dashed lined being a piecewise linear interpolation in between.

On the second data set, the camera was subjected to a relatively faster and complex
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Figure 4.3: Comparison of scaled MMBM and AMOF during yaw axis camera rota-

tions.

rotational motion with respect to each axis changed continuously and arbitrarily in

time. It can be observed that discrepancies in Fig. 4.4 are more pronounced. The

main reason for this is the frequency of rotations are faster than the rotation given

in Fig. 4.4. Camera data starts to suffer from low sampling rate and the resulting

aliasing. Moreover, optical flow algorithms are expected to be used on sharp images

and their performance is affected from motion blur and hence AMOF deteriorates

as a result. It is also useful to remind that, the current comparison is done with the

assumption of constant velocity rotations. The second data set is hence at the limit

of validity for comparing MMBM and AMOF. However, the general form of the

waveforms are still consistent with each other.

4.2 REAL TIME MMBM CALCULATION

MMBM was evaluated numerically in Section 4.1 since the analytic evaluation of

the integral was not possible. Numeric integration is usually computationally costly

and cannot be implemented in real-time applications. Consequently, MMBM was

approximated with a Riemann sum to meet real time requirements.

Instead of evaluating the MMBM definition of (3.10) over the whole image plane, it

was approximated with Riemann sum using square areas whose values are evaluated

only at middle points shown in Fig. 4.5. The final MMBM calculation hence reduces
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Figure 4.4: Comparison of scaled MMBM and AMOF during arbitrary and relatively

faster camera rotations.

to

µ∗ =
1

n

n∑
i=1

√
u̇i

2 + v̇i
2dA. (4.1)

where u̇2+v̇2 is given by Eq. (3.17) and dA is the region whose value is approximated

with the exact value of a single, mid point. All summation regions are square and

uniformly sampled from the image plane. Note that multiplication of dA in (4.1) can

also be ignored since all regions have the same area and only the waveform of the

MMBM is important. This approximation is reasonable since all image plane motion

is the result of a single camera ego motion and therefore exhibit significant spatial

smoothness.

Numerical evaluation and Riemann sum approximation of MMBM gives almost the

same function form except small integration errors. The percentage error between

numerical evaluation and Riemann sum approximation, 100 ∗ (µ − µ∗)/µ, is shown

in Fig. 4.6, with the small percentage errors justifying our choice of the number of

samples used for the approximation.

4.3 SENSITIVITY ANALYSIS

One of the fundamental questions that must be answered is what happens if the mea-

surements are noisy or erroneous. In real life inertial sensors, especially commercially
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available cheap MEMS based ones are notorious for their noise levels. In this section

the translational motion is also included in analyses, since all of the measurements

will be predetermined values for demonstration purposes. Variation of MMBM under

the noisy conditions will be examined in the rest of this chapter.

4.3.1 Sensitivity of MMBM to Focal Length "f"

Intrinsic calibration of camera showed that the focal length, f, is 4.2548mm. It is

a very small focal length since we were using a wide angle lens. Like in all of the

measurements, camera calibration can have noise or it may be calculated completely

wrong. Therefore, knowing how MMBM changes for different focal lengths is cru-

cial. Table 4.1 shows the MMBM value for noisy and non-noisy velocity measure-

ments. Also the percentage of change is added to compare rate of changes in MMBM

and f. Translation and rotation in z axis is not affected. That is also obvious since

f has no relation with ωz and vz as seen in (3.20). But, both rotation and translation

in x and y axis related motion blur is almost directly proportional to f variation, but

the rate of changes are not exactly the same for MMBM and the f. Hence, the value

of f should be calculated correctly to have correct camera egomotion to motion blur

relation. Otherwise, effect of z axis motion may be overestimated or underestimated

in MMBM calculation. If MMBM would proportionally change with f, it would still

be used in external camera triggering application that will be explained in chapter 5

since the relative values of MMBM is the key point in that application.

4.3.2 Sensitivity of MMBM to Noise in Pitch, "wx", and Yaw, "wy" Motion

Pitch and yaw axis rotation velocities are actually directly proportional to MMBM

as seen in the first four row of Table 4.2. However, motion components in all axes

are added to each other and the final MMBM is the result of all added vectors. Vec-

tors caused by different axis motion either constructively or destructively added to

each other depending on the direction they are pointing through. Hence the value of

MMBM can increase or decrease as the last two rows of Table 4.2 indicates. It can be

hard to visualize combined motion blur vectors. However, in the worst case MMBM
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Table 4.1: Effect of focal length parameter on MMBM for different velocity vectors

[ωx, ωy, ωz, vx, vy, vz, z] f Noise MMBM MMBM + σ % Change
[1,0,0,0,0,0,0.5] 5% 4.3514 4.5594 4.7795%

[1,0,0,0,0,0,0.5] -10% 4.3514 3.9372 -9.5204%

[0,0,1,0,0,0,0.5] 5% 0.9951 0.9951 0%

[0,0,1,0,0,0,0.5] -10% 0.9951 0.9951 0%

[1,0,1,0,0,0,0.5] 5% 4.4020 4.6073 4.6642%

[1,0,1,0,0,0,0.5] -10% 4.4020 3.9940 -9.2674%

[1,1,1,0,0,0,0.5] 5% 6.2514 6.5412 4.6346%

[1,1,1,0,0,0,0.5] -10% 6.2514 5.6757 -9.2099%

[0,0,0,1,0,0,0.5] 5% 8.5095 8.9350 5%

[0,0,0,1,0,0,0.5] -10% 8.5095 7.6586 -10%

[0,0,0,0,0,1,0.5] 5% 1.9902 1.9902 0%

[0,0,0,0,0,1,0.5] -10% 1.9902 1.9902 0%

[0,0,0,1,0,1,0.5] 5% 8.6073 9.0279 4.8860%

[0,0,0,1,0,1,0.5] -10% 8.6073 7.7680 -9.7509%

[0,0,0,1,1,1,0.5] 5% 12.1280 12.7253 4.9246%

[0,0,0,1,1,1,0.5] -10% 12.1280 10.9350 -9.8370%

would change directly proportional with ωx and ωy variations.

4.3.3 Sensitivity of MMBM to Noise in Roll, "wz" Motion

Similar comments said in Section 4.3.2 are also valid for the variations in roll axis

rotation too. However, Table 4.3 also confirms that roll axis rotation is much recessive

compared to pitch and yaw axis rotations. MMBM would change proportinally with

changing z axis rotation variations only if the motion was purely z-axis rotation. But,

when motion has other rotational components, the effects of noise in z axis rotation

becomes significantly less important.

4.3.4 Dependence of MMBM to Scene Depth, "z"

The reason why only the rotational motion was considered in real experiments will

be clear in this section. When scene depth increases, the motion blur resulting from

the same motion significantly shrinks. Especially field robots like SensoRHex usually
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Table 4.2: Effect of noise in pitch and yaw parameter on MMBM for different velocity
vectors

[ωx, ωy, ωz, vx, vy, vz, z] Noise MMBM MMBM + σ % Change
[1,0,0,0,0,0,0.5] 5% ωx 4.3514 4.5690 5%

[1,0,0,0,0,0,0.5] -10% ωx 4.3514 3.9163 -10%

[0,1,0,0,0,0,0.5] 5% ωy 4.4273 4.6486 5%

[0,1,0,0,0,0,0.5] -10% ωy 4.4273 3.9846 -10%

[1,0,1,0,0,0,0.5] 5% ωx 4.4020 4.6170 4.8852%

[1,0,1,0,0,0,0.5] -10% ωx 4.4020 3.9728 -9.7496%

[1,1,0,0,0,0,0.5] 5% ωx & ωy 6.2063 6.5166 5%

[1,1,0,0,0,0,0.5] -10% ωx & ωy 6.2063 5.5857 -10%

[1,1,1,0,0,0,0.5] 5% ωx 6.2514 6.4041 2.4423%

[1,1,1,0,0,0,0.5] -10% ωx 6.2514 5.9583 -4.6886%

[1,1,0,1,0,0,0.5] 5% ωx 13.6473 13.7181 0.5193%

[1,1,0,1,0,0,0.5] -10% ωx 13.6473 13.5149 -0.9697%

[1,1,0,0,0,1,0.5] 5% ωx 6.3850 6.5375 2.3871%

[1,1,0,0,0,1,0.5] -10% ωx 6.3850 6.0917 -4.5939%

[1,1,0,1,0,1,0.5] 5% ωx 13.7110 13.7820 0.5179%

[1,1,0,1,0,1,0.5] -10% ωx 13.7110 13.5783 -0.9674%

[1,1,0,1,1,1,0.5] 5% ωx 13.6512 13.5861 -0.4768%

[1,1,0,1,1,1,0.5] -10% ωx 13.6512 13.7908 1.0227%

work in large fields and the scene depth is usually more than a few meters. As seen in

Table 4.4 motion blur caused by the translational motion can be quite large for close

scenes and it becomes very small once scene depth goes beyond a few meters.

Percentage of rotational and translational motion effects can significantly change for

different scene depths. Table 4.5 illustrates MMBM values calculated for only rota-

tion measurements and for whole motion of camera for different scene depths. The

given motion is a reasonable upper bounds for uniform slow locomotion of Sen-

soRHex and it is the same throughout Table 4.5. The only control variable is the

scene depth. Effect of translation can be dominant for close camera to scene distance,

but, it is negligibly small for cameras working on large fields, in particular when the

scene depth is more than a few meters.
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Table 4.3: Effect of noise in roll parameter on MMBM for different velocity vectors

[ωx, ωy, ωz, vx, vy, vz, z] Noise in z MMBM MMBM + σ % Change
[0,0,1,0,0,0,0.5] 5% 0.9951 1.0449 5%

[0,0,1,0,0,0,0.5] -10% 0.9951 0.8956 -10%

[0,1,1,0,0,0,0.5] 5% 4.5104 4.5190 0.1891%

[0,1,1,0,0,0,0.5] -10% 4.5104 4.4946 -0.3506%

[1,0,1,0,0,0,0.5] 5% 4.4020 4.4073 0.1212%

[1,0,1,0,0,0,0.5] -10% 4.4020 4.3922 -0.2229%

[1,1,1,0,0,0,0.5] 5% 6.2514 6.2561 0.0740%

[1,1,1,0,0,0,0.5] -10% 6.2514 6.2429 -0.1371%

[0,0,1,1,0,0,0.5] 5% 8.5522 8.5566 0.0513%

[0,0,1,1,0,0,0.5] -10% 8.5522 8.5441 -0.0950%

[0,0,1,0,0,1,0.5] 5% 2.2252 2.2479 1.0198%

[0,0,1,0,0,1,0.5] -10% 2.2252 2.1825 -1.9184%

[0,0,1,1,0,1,0.5] 5% 8.6486 8.6529 0.0492%

[0,0,1,1,0,1,0.5] -10% 8.6486 8.6408 -0.0910%

[0,0,1,1,1,1,0.5] 5% 12.1786 12.1824 0.0311%

[0,0,1,1,1,1,0.5] -10% 12.1786 12.1714 -0.0592%

Table 4.4: Effect of scene depth on MMBM

[ωx, ωy, ωz, vx, vy, vz] z MMBM
[0, 0, 0, 0.25, 0.125, -1] 0.2 7.1647
[0, 0, 0, 0.25, 0.125, -1] 1 1.4329
[0, 0, 0, 0.25, 0.125, -1] 5 0.2866
[0, 0, 0, 0.25, 0.125, -1] 20 0.0716

Table 4.5: Contribution of translation on MMBM depending on scene depth

[ωx, ωy, ωz, vx, vy, vz] z MMBM tMMBM Tr. Contribution
[0.5, 0.5, 1, 0.25, 0.125, -1] 0.2 3.1935 8.4038 163%

[0.5, 0.5, 1, 0.25, 0.125, -1] 1 3.1935 3.8547 20.7%

[0.5, 0.5, 1, 0.25, 0.125, -1] 5 3.1935 3.2931 3.1%

[0.5, 0.5, 1, 0.25, 0.125, -1] 20 3.1935 3.2163 0.71%
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CHAPTER 5

MMBM FOR MOTION BLUR MINIMIZATION

The definition, derivation and analysis of MMBM were given in previous chapter and

the different possible areas and applications where MMBM can be used will be ex-

plained in the current chapter. The most prominent ability of MMBM is tracking the

motion blur in real time. Having a notion of motion blur level is a very valuable in-

formation for the user. This information can be very crucial and leads ways too many

applications. Definitely, the image processing approaches are valuable for estimating

motion blur caused by movement of individual objects in the scene. But, the limita-

tions of such approaches are motion blur calculation frequency (approx. 30Hz) and

the fact that a blurry image must be captured for the estimation. The calculation of

MMBM can be done at very high frequencies (more than 600Hz) compared to image

processing based motion blur estimation that enables the user to track motion blur

caused by quickly changing camera motion. Furthermore, using a complementary

sensor to camera gives flexibility to do some processes before image is captured.

In order to understand possible applications, the image acquisition by using a com-

plementary inertial sensor must be understood. Fig. 5.1 illustrates the timing of two

successively captured frames whose exposure times can be identified as te1 and te2.

The aim of MMBM is to approximate camera rotation based average motion blur that

will result from exposure during te1 by using inertial measurements collected at the

time instant tim. Deriving the exact motion blur with MMBM is impossible since it

requires knowledge of future. Unless absolute camera motion is controlled or future

camera motion can be precisely estimated with a motion model, this is impossible.

However, MMBM can still give reasonable results in many applications since compu-
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tation and trigger delay td1 and exposure time te1 can be sufficiently small that robot

dynamics would restrict radical changes in rotational velocity. Furthermore, many

causes of impulsive rotational velocity changes, such as leg touchdown instants of a

legged robot, can be avoided by modeling them as a function of input and robot states

and predicting their occurrences.

tim tt1 tin tt2

te1 te2

td1 td2

tf1 tr2tf0... ...tr1

Figure 5.1: Timing diagram of capturing an image and using an inertial sensor.

MMBM can be directly used in motion blur related scenarios. Giving decisions on

motion blur level of an image and manipulation of camera triggering instances to

obtain sharper images are directly available thanks to the information MMBM gives.

It is also possible to improve performance of MMBM with some additions for the

actual image capture process. All of the details related to the different applications of

MMBM will be discussed in the following sections.

5.1 MMBM FOR FRAME TRIGGERING BASED MOTION BLUR MINI-

MIZATION

An intuitive approach to triggering an image frame is measuring rotational velocities

of a robot with a gyroscope at a high sampling frequency and triggering the camera

when the magnitude of the angular velocity vector is sufficiently small. Although,

this idea has potential, rotational velocities around the three different axis do not

contribute to motion blur equally. However, the proposed metric models the effects

of all axes rotations on motion blur. Individual rotational velocities and corresponding

metric values while SensoRHex is walking straight on a flat surface can be seen in

Fig. 3.4. The plot spans approximately 2.5 step cycles of the hexapod. Naturally,

exact motion blur depends on MMBM levels during the entire camera integration

time. However, triggering an image when MMBM is sufficiently low is expected to

give sharper images since the acceleration of a robot with considerable inertia (10 kg
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mass for our platform), would be limited.

Triggering a camera externally involves reading gyro data and calculating MMBM

in real time and externally triggering the camera according to MMBM value. The

timing diagram given in Fig. 5.1 can be used to explain externally triggering a camera

with calculated metric value. Gyro data can be collected at a few hundred Hz and for

each gyro data MMBM can evaluated in real time. When camera is free, e.g. tf0,

and MMBM is sufficiently low for gyro data sample obtained at tim, external trigger

pulse is applied to the camera at tt1. There is a delay td1, which is approximately

2-3ms, between gyro data sample and trigger moment since MMBM is evaluated

in a PC and trigger command is passed to a microcontroller which generates the

trigger pulse. As soon as the trigger pulse is generated exposure time te1 begins and

elapses approximately 10-50ms. Most of the cameras can perform image acquisition

and sending a frame data to a PC in parallel. However, we preferred to work on

serial mode in which user has to wait for data to be transferred, tr1, before starting

a new exposure. Because, triggering instance in parallel mode cannot be applied as

precisely as the external triggering in series mode. Finally, camera becomes available

for capturing a new image frame at tf1.

Camera triggering with MMBM relies on the idea that only sharp images should be

captured. Once the image is blurred, reverse filtering approaches can be applied.

However, deconvolution is an ill defined problem and deblurring is usually done with

search methods which require considerable computational power and most of the

deblurring algorithms cannot be applied in real time applications.

The aforementioned triggering strategy was implemented on SensoRHex. The camera

is triggered only if it is free, the last three samples of MMBM is lower than a constant

threshold and those last samples are monotonically decreasing. In order to fairly

explain the difference of uniform and MMBM triggering, maximum camera sampling

is assumed to be 5 fps and triggering of a new frame was allowed only after 0.2

seconds passed since the last triggering instance and all triggering conditions are met.

Therefore, it is guaranteed that number of images captured by MMBM triggering will

be lower than what what camera can capture at its maximum speed. The resulting

triggering scheme can be seen in Fig. 5.2. Although, triggering signal is given when
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the metric value is substantially low, it can get larger during an exposure period.

Hence, the resulting image may become moderately corrupted by the motion blur.

But, the extreme blur cases are completely avoided. Triggering the camera at time

instances when the exposure time overlaps with a minima of the metric also requires

predictive techniques to optimally minimize motion blur.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5
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Figure 5.2: MMBM based and image capture. Shaded regions illustrate exposure

time and crosses pinpoint the trigger instants.

Using the triggering approach explained in this section, extremely blurred images,

which would have too much information loss, can be avoided and sharp image through-

put can be maximized. Practically, this application is one of the most appealing one

because of maximization of the number of sharp images and its simplicity. The de-

tailed performance of this approach is given in chapter Section 6.

5.2 MMBM WITH PREDICTIVE FRAME TRIGGERING

The actual motion blur is a function of camera movement and/or object movement on

the scene during exposure period. One idea is to combine two techniques mentioned

in Section 5.3. More clearly, the application can be triggering the camera externally

with the average MMBM calculated during the exposure period. This technique is

non-causal and requires the knowledge of how the camera will move in the future.

Although, the implementation of that method sounds like impossible, there exists

forecasting methods for the systems whose behaviour can be modelled and is pre-

dictable.

There are two possible scenarios where this approach can be used. First, the camera

motion may be controlled by the user, so that, the future motion is actually known.
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For instance, when a camera is mounted on a serial manipulator arm and the motion

of the controller of the arm applies predefined trajectories for the end effector. Thus,

the exact future motion of the camera is known and the future values of MMBM can

be calculated by using that knowledge instead of obtaining the motion information by

an external sensor that limits the application to the causal domain. Having an average

MMBM value for the whole exposure period can be used to capture images such

that exposure period will reside on a local minima of MMBM. Thus, the quality of

captured images would be optimal. In the second scenario, the motion of the camera

is not predetermined, however, the body that is carrying the camera has a motion

model. Motion models give predicted motion of a body considering the current states

and the inputs. For instance, a motion model of a car can predict what will be the

position and velocity of the car, if you throttle the gas pedal and steer the wheels for

certain amounts. Inevitably, models cannot incorporate all of the variables that would

affect the motion, but, only considers the most dominant effects. Better the derived

model, better the predictions will be. Whenever prediction is possible, MMBM can

be calculated for the estimated future motion. Hence the camera can be triggered

accordingly.

In most of the robotic areas, the robot motion is not predetermined and the motion

model of the robot may not exist. The robot that is used for the validation is a six

legged robot whose legs are c-shaped and compliant. Although, the flexibility of

legs is a very crucial factor on the stability of the robot, due to the same flexibility

SensoRHex does not have any motion model. But, it may still be possible to predict

the near future robot motion by using blind forecasting methods, if the robot body

is exhibiting almost periodic motion for certain locomotion type. Fig. 5.6(a) and

Fig. 5.2 gives almost 5 steps of robot and the calculated MMBM values seems to be

a periodic function with certain amount of noise to human perception. There is an

open door for improving the performance of MMBM based camera triggering. In this

thesis, no prediction algorithms are incorporated. However, we tried to analyze how

much improvement would be possible, if the near future motion of SensoRHex could

have been perfectly predicted.

Saving images and MMBM values calculated online to memory gives opportunity to

do offline analyses on them. In our case, we did not implement any prediction al-
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gorithms, however, we know what would be the MMBM values for a fixed exposure

time for all of the possible trigger instances since we saved all of the data. Fig. 5.3

shows the regular MMBM in blue plot and average value of all MMBM samples

for the next 50ms in red. Red line is smoother than the blue one since it averages

multiple MMBM values over 50ms and there exists a time delay between them. Al-

though the horizontal displacement of curves is not very high, actual values, vertical

displacement, can significantly change. The difference between MMBM and the per-

fect estimation of averaged MMBM is shown is Fig. 5.4. Acceptable blur amount

threshold was set to approximately 0.4. Even though camera was triggered when

MMBM was below the predetermined threshold, variations in the velocity of camera

can change the actual motion blur amount almost 0.7 units higher than the instanta-

neously calculated MMBM. This fact results in more blurry images than the expected

ones. The percentage difference can be as high as 150% as seen in Fig. 5.5. More

quantitative analysis can be found in Table 5.1. As expected, the mean error is close

to zero since the perfectly estimated MMBM can be higher or lower than the instan-

taneously estimated MMBM. But, the mean of absolute value of error turns out to

be 0.1930 and the maximum difference is 0.7465. Those numbers are not negligible

when the maximum value of MMBM is considered to be approximately 2.0. Percent-

age wise, improvements up to 150% and on the average 30.14% seems to be possible

using a prediction scheme assuming ideal prediction is possible. The reason why the

improvement percentage can be very high is we are already capturing sharp images

that correspond to low MMBM values. Hence, having a 0.75 unit error can really

correspond to very high percentages. But still, 30% average improvement would be

a good contribution if we could have predicted the future motion of SensoRHex per-

fectly. Unfortunately, RHex does not have any motion model and only alternatives

are blind forecasting techniques for which, the improvement percentage is expected

to be less than 30%.

Table 5.1: Potential performance gain from prediction.

Parameter Min. Max. Mean Abs. Mean Std. Dev.
Error -0.7465 0.7397 0.0028 0.1930 0.2448

% Error -94.47% 147.84% 3.88% 30.14% 37.92%
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Figure 5.3: Comparison of MMBM and the average of perfectly estimated MMBM

for the next 50ms.
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Figure 5.4: Error between MMBM and the average of perfectly estimated MMBM

for the next 50ms.
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Figure 5.5: Percentage error between MMBM and the average of perfectly estimated

MMBM for the next 50ms.
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5.3 OTHER POTENTIAL USES FOR MMBM

MMBM gives an estimation of motion blur when the camera velocity is assumed to

be constant during the exposure period. It is just an instantaneous information that

is calculated from each gyroscope data sample obtained. Higher values of the metric

corresponds to higher amount of average motion blur and lower values of it represents

sharper images if an image capture begins at that moment.

Fig. 5.6(a) illustrates the MMBM value variation while SensoRHex is walking straight

on a flat surface. Plot spans slightly larger time duration than two steps of SensoRhex.

Camera was triggered at uniform 5fps during the locomotion and exposure time of the

camera was set to 50ms. The red crosses on MMBM plot marks the trigger instances

and shaded regions illustrate exposure periods. Trigger instances are uniformly sep-

arated since the frame rate is fixed. Exposure periods reside on random locations on

the metric plot since triggering and locomotion were two independent actions. When

the exposure period overlapped with a maxima of MMBM, marked as the first red

shaded region on Fig. 5.6(a), the image in Fig. 5.6(b) was captured. In that partic-

ular image motion blur is so extreme that red blobs on the 4x4 square blob pattern

cannot be independently identified. When the exposure period resides on moderate

levels of MMBM as seen on the second red shaded region on Fig. 5.6(a), blobs can be

separately identified, even though the image still has motion blur. Moreover, if an im-

age is triggered such that exposure period coincides with a local minima of MMBM,

marked as the last red shaded region in Fig. 5.6(a), a pretty sharp image in Fig. 5.6(d)

is captured. Similarly, if the MMBM remains in the moderate levels during the expo-

sure time, the resulting images are moderately blurred. Therefore, triggering images

when MMBM is low and remains low during exposure period results in less blurred

images.

5.3.1 Frame Quality Assessment Using MMBM

The most simple usage of MMBM can be on giving decisions whether or not to

use an image. One embodiment can be using the camera on the regular fixed frame

rate capturing mode and giving a decision on whether to directly use each image
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Figure 5.6: Relation between image sharpness and MMBM. Shaded regions illustrate

exposure time and crosses pinpoint the trigger instants. Onboard camera is (a) uni-

formly sampled at 5fps. Example frames given in (b), (c) and (d) are those triggered

consecutively at red shaded regions in (a).
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depending on a single MMBM value calculated at the beginning of camera’s light

exposure. Fig. 5.6(a) illustrates a convenient example for this usage. Camera works

at fixed 5 fps rate and MMBM is calculated independently using rotational velocities

of camera. One can simply discard an image if the motion blur level of the image

is known to be too high that no meaningful information can be obtained from that

image. For instance, image shown in Fig. 5.6(b) can be discarded as soon as it is

captured, if that amount of motion blur makes the image useless by just comparing

the MMBM value calculated at the beginning of that image’s exposure time with a

predetermined threshold value. Such a usage can be useful in cases where losing

some of the images are not so crucial and user can tolerate waiting for the next image.

Although, some of the images would be discarded, user will be working with images

that are meaningful to him. Instead of wasting computation time to extract some

features from images and still having no information at all or a divergent information,

CPU can be used for some other purposes while waiting for the next image. An

enhancement to this approach can be taking the average of calculated MMBM values

for a whole exposure period, i.e. te1. User will have both image and MMBM values at

the end of the exposure period. Then, using the average of MMBM values is expected

to give better sharp/blurred image classification rate.

The MMBM can always be calculated while the system is on, i.e. during tf0, td1, te1,

tr1, tf1 and so on. Motion blur information that comes from MMBM is calculated at

high sampling rate compared to image acquisition and it can be calculated multiple

times even for one exposure period. Therefore, it can be possible to decide not to

use an image right before or during the capture process, if the hardware of camera is

designed accordingly. In this way, user would not even capture any images and would

not need to save it to the memory.

Discarding an image is not the only decision that can be made. Any decision that

requires the motion blur amount on a captured image can be made by using MMBM.

For example, there exists image sharpening methods to remove the motion blur up to

a certain extend. These methods are usually time consuming and requires consider-

able amount of computation power due to the ill-defined nature of the problem. The

decision of whether or not to use sharpening methods can be made depending on the

MMBM. If the MMBM values remained high during the exposure period, the image
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will be highly blurred as seen in Fig. 5.6(b) and a resharpening method can be applied

to only this image while the images like Fig. 5.6(c) and Fig. 5.6(d) are directly used.

5.3.2 Blur Kernel (PSF) Estimation

The aim of MMBM is to avoid motion blur, before it actually occurs. Inevitably, there

will be certain amount of motion blur on images unless the camera is standing still and

the objective was delaying image acquisition until more favorable image capturing

instances occur. Since the output images of MMBM based camera triggering are

sharper than fixed frame rate recording, applying resharpening algorithms to those

images are expected give even better results. Furthermore, resharpening algorithms

also suffer from extreme motion blur since some of the information is completely lost

to the blur and that information can not be reversible. Hence, avoiding extremely

blurred frames works for resharpening algorithms too.

Most of the resharpening algorithms require the image kernel (or PSF) that repre-

sents the motion blur. Convolution of those kernels with sharp images would give the

blurred image and inverse filtering the blurred image is one of the highly researched

topics as explained in chapter Section 2. In real life, those kernels are spatially varying

since the shape of blur is not the same throughout images for most type of motion.

Some of the researches use computer vision techniques to find PSF, and some oth-

ers use external sensor information. Inertial sensors appear to be among the most

popular ones in PSF estimation. MMBM already uses a gyroscope and optionally a

accelerometer. The measurements obtained from inertial sensors can also be used on

PSF estimation.

5.4 DISCUSSION ON (DEALING WITH) NON-UNIFORM SAMPLED VIDEO

Once the MMBM based camera triggering is used, the captured images are not uni-

formly sampled any more. This may not be a problem for an operator who is con-

trolling the robot by using the images captured from an onboard camera. Although

refreshing rate of images will be different, operator will be seeing sharper images.

However, this may still be a problem for the operator or different algorithms that
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need information extracted from captured images.

5.4.1 Frame Interpolation

In cases where the uniformity of measurements is important, reconstruction of uni-

formly sampled video stream can be possible. Saving time stamps of images and

gyro data, the movement of pixels can be estimated. Referring back to Fig. 5.1 and

assuming tt1 is in the correct time instance and tt2 is slightly delayed, it is possible to

extract the expected image if the fixed frame rate capture was used. In other words,

interpolation based image reconstruction can be done by making use of both images

and motion information obtained from inertial sensors. Finally, operator or the con-

trolling algorithms would work with only uniformly reconstructed images. That kind

of reconstruction needs further research on it to prove its applicability and it is not

examined further in this thesis.

5.4.2 Feature Interpolation

Uniform reconstruction of whole video stream can be computationally demanding

and/or unnecessary. Because, most of the measurements are taken using extracted

features from images. In other words, features are more important than the whole im-

age in most of the cases. MMBM based camera triggering is already shown to yield

sharper images and features can be extracted more correctly from sharper images.

Therefore, interpolating only the location of features is expected to save computation

time, yet, give uniformly sampled measurements. Hence the conventional algorithms,

which require fixed amount of time between each consecutive input, can be conve-

niently used with MMBM based camera triggering approach.

5.4.3 Bayesian Estimation / Filtering

There are algorithms which require information extracted from images and they can

already handle non-uniform data. One of the areas where information extracted from

images is heavily used is simultaneous localization and mapping (SLAM). There are
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two common approaches used in SLAM: Kalman Filter and Particle Filter. It is pos-

sible to use non uniformly sampled measurements in both filters. They have basically

two step which are the motion update and the measurement update. Motion update is

done using the motion model of the robot and it gives a predicted location of robot.

The uncertainty of SLAM increases with each motion update since the models incor-

porate noise to model real life more accurately. On the other hand, the measurement

update gives new information and decreases the uncertainty, even though the mea-

surements have specific noise too. Especially, particle filter is more suitable to work

with non-uniform measurements. Simply, small, fixed and multiple motion update

steps can be executed until a measurement arrives and the measurement update can be

executed whenever the data is available. Similar approach can be applied in Kalman

filter too. However, the analytical derivations would be more complex.
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CHAPTER 6

PHYSICAL EXPERIMENTS

The advantages MMBM gives can best be expressed by showing it in action. A hard-

ware setup is prepared to demonstrate how MMBM can be used. The hardware is

mounted on SensoRHex to show image quality improvements. This chapter presents

our results on the physical experimental setup and presents a comprehensive discus-

sion of the results.

6.1 HARDWARE

The proposed MMBM based camera triggering system was implemented on the Sen-

soRHex hexapod. The system consists of a Fizoptika optic gyro, a PointGrey Flea2

camera, a PIC based microcontroller board and a 500MHz Pentium class PC-104

CPU. Trigger decisions are made by the sensor PC, but, the camera is triggered with

an interface microcontroller. Images are acquired with a PointGrey Flea2 camera.

All hardware is mounted on SensoRHex, thus, the mobility of robot is assured. High

level commands such as calibrate, sit, walk and run are given by a human operator

via an external operator PC. Controller of SensoRHex actuates each leg depending

on the commands given by the operator. On the robot side, main voltage and cur-

rent measurements can be obtained from power node and hip nodes both actuate the

motors and supply local data like motor voltage, motor current and motor encoder

readings to the control PC of SensoRHex. All of the robot parameters are collected

on the control PC and sent to the sensor PC over the ethernet connection. That data

can be collected and stored or processed online depending on the needs of the user.
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Furthermore, we have an external tracking system based on multiple cameras which

gives accurate position of robots that can be used as ground truth on ATLAS. The

robot pose is tracked with an external tracking system which has multiple cameras.

Global position and orientation of the robot is sent to the sensor PC in real time. All

of the sensor data is gathered in one PC which enabled us to give a time stamp. Al-

though, slight delays occur during the data transfer, those delays do not exceed a few

milliseconds and hence all data is conveniently synchronized within reasonable error

range. Connections between all hardware components are illustrated in Fig. 6.1.
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Figure 6.1: Experimental data collection setup.

All hardware components of MMBM based camera triggering system are located

on SensoRHex. The gyro gives rotational velocities in each axis at 600Hz. Due to

the simplicity and sufficiency concern only the rotational motion of the camera is

considered throughout the experiments. MMBM is calculated for each gyro reading

by a PC-104 CPU unit in real-time. Fig. 3.4 illustrates MMBM calculated during

the normal walking mode of SensoRHex. The robot walks on a flat concrete sur-

face. High MMBM values correspond to time instances where motion blur would

be high if an image acquisition was triggered at that moment. Fig. 3.4 spans a dura-

tion slightly longer than two steps of SensoRHex and three leg touch down instances
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can be observed as the highest MMBM values on the plot. The quasi periodicity of

body oscillations can also be observed. Exploiting such quasi periodicity, the cam-

era is triggered only when MMBM is below a certain threshold and monotonically

decreasing.

The camera was configured to work in its external triggering mode with the exposure

time fixed to 70ms. Trigger signals were given by the PC and directed to the mi-

crocontroller board over a serial port. The microcontroller then generated signals to

trigger the camera. Finally, captured frames were transferred to the onboard sensor

PC over the IEEE1394 interface.

6.2 IMAGE SHARPNESS IMPROVEMENT WITH WALKING SENSORHEX

In this experiment the aim was to demonstrate image sharpness improvement when

the MMBM base camera triggering is applied. SensoRHex was equipped with our

proposed motion blur minimization setup. Two data sets were collected while Sen-

soRHex was walking straight on a flat surface and pointing to a checkerboard pattern

as shown in Fig. 6.2. The first data set incorporates frames captured at a fixed rate

of 5fps and the second one uses our motion blur minimization system to determine

capture timings. The camera was setup to have the same exposure time, 70ms, for

both. Our motion blur minimization system waits at least 200ms between two suc-

cessive frames to ensure a fair comparison with the 5fps fixed frame rate set. Once

200ms passes, the PC starts to calculate MMBM for each gyro reading. The trigger

command is applied only if MMBM is below certain threshold and monotonically

decreasing.

Table 6.1: JNBM averages over frames captured during straight walk of SensoRHex
on flat surface

Image Capture Method JNBM average
Fixed Frame Rate @5fps 0.3564

MMBM Based Motion Blur Minimized Capture 0.4908

In order to quantitatively evaluate improvements on motion blur, checkerboard pat-
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(a) (b)

Figure 6.2: Motion blur minimizing system implementation on SensoRHex. (a) Ex-

periment area, (b) robot’s point of view.

terns were cropped from each frame and cropped images were evaluated with Just

Noticeable Blur Metric (JNBM) [8]. However, blur amount detection within a sin-

gle frame is an ill-defined problem and isolated JNBM results may not totally agree

with human visual inspection, JNBM gives consistent results on the average. JNBM

for both data sets are presented in Table 6.1. JNBM gives higher results for sharper

images. Subjective inspection of frames also agree with the average JNBM results.

In particular the most blurred frames are clearly avoided with our proposed system.

Fig. 6.3(a) and Fig. 6.3(b) show hand-picked extremely blurred frame examples from

both data sets.

(a) (b)

Figure 6.3: Examples of hand-picked excessively blurred frames from SensoRHex

walking: (a) Image from fixed frame rate capture (b) Image from external triggering

with MMBM.
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6.3 IMPLICATIONS OF SHARPER IMAGES ON VISUAL PERCEPTION

Motion blur can cause serious information loss on images. The visual features com-

puted on images are corrupted or may completely vanish. In order to assess the effec-

tiveness of MMBM triggering, an experimental setup consisting of our experimental

hexapod and an external motion tracking system was constructed. The main purpose

of this experiment is to show motion blur corrupts features and how MMBM based

camera triggering improves feature extraction performance.

SensoRHex walked straight through a similar pattern as illustrated in Fig. 6.4(a) at

different constant walking velocities throughout the experiment. The optical target

pattern in Fig. 6.4(a) has 16 identical 10cm by 10cm square red patches and all blobs

have 2cm separation between each other, but, the pattern used in Table 6.2 was half

of its size. Global positions of those patches’ center points are known. The start-

ing position of SensoRHex was 6 meters far away from the pattern and robot walked

approximately three meters in each experiment. Robot walked at three different ve-

locities. Fast, moderate and slow walks correspond to 0.53m/s, 0.17m/s and 0.085m/s

respectively. While the robot was walking, images are captured with an onboard

camera. Initially, uniform sampling at 5fps is used to get images. Then, MMBM trig-

gering is applied at three different thresholds. For each metric threshold robot walked

at all modes. For a fair comparison, only the data corresponding to the same walk

duration is considered for each walk mode. All of the acquired images are color fil-

tered to find blob positions on sensor plane. Once the world coordinates of red blobs

and their corresponding image plane coordinates are known, camera location with re-

spect to the world coordinates can be extracted, i.e. extrinsic camera calibration can

be performed. However, the problem addressed in this experiment is extraction of

blobs. Because, motion blur corrupts features, which are square red blobs in our case,

and may result in extreme information loss as shown in Fig. 6.6(a). Captured images

are processed offline. Color filter was applied to extract blobs. Fig. 6.4, Fig. 6.5

and Fig. 6.6 illustrates three different motion blur levels in a single run. Fig. 6.4(a),

Fig. 6.5(a) and Fig. 6.6(a) are the raw images captured with the resolution 640x480

pixels. On the other hand, Fig. 6.4(b), Fig. 6.5(b) and Fig. 6.6(b) shows color filtered

images. For better clarity, only the cropped regions of interests (160x120 pixels) are
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shown on the processed images. Due to motion blur, extract all 16 blobs could not

been extracted in some of the images, for example, Fig. 6.6(b). Motion blur also

causes distortions on images that can result in distorted features and false alarms as

shown in Fig. 6.5(b) When some of the blobs are lost or many of them fused together,

blobs cannot be matched with their global positions which makes the camera position

estimation impossible. Feature extraction statistics are given in Table 6.2. Then, we

applied extrinsic camera calibration using OpenCV libraries to find location and ori-

entation of camera. Pose and orientation extracted from images and external tracking

system are compared. We confirmed that once the blob center locations are extracted,

location measurement performance from images are similar to each other. Although,

distance in z-axis, which is distance between robot and the pattern, can be extracted

with minimal error, orientation of camera is considerably noisy due to the planar pat-

tern. Hence, the location in x-axis and y-axis suffers from the noise in orientation.

(a) (b)

Figure 6.4: Blob extraction from a sharp image. All blobs can be identified accurately.

(a) The original image, (b) output of blob extraction.

The only parameter defined by the user to use the proposed triggering method is the

threshold value. Threshold value states the maximum allowable motion blur amount

in images. Setting the threshold value to high values allows more blurred images,

however, number of total captured images increases. Decreasing the MMBM thresh-

old results in less number of acquired images as seen in Table 6.2. Because, the time

the metric spends below the preset threshold also decreases. Low metric thresholds

may fail to capture any images when the robot moves so fast that real time MMBM

never falls below the threshold. That was the case when the metric threshold was set
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(a) (b)

Figure 6.5: Blob extraction from a blurry image. Blobs are seriously deformed and

there exist false alarms. (a) The original image, (b) output of blob extraction.

(a) (b)

Figure 6.6: Blob extraction from a very blurry image. None of the blobs can be

identified correctly and all of them are missed. (a) The original image, (b) output of

blob extraction.
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to 0.4 and 0.2 for the robot’s fast walk mode and results were not included in Ta-

ble 6.2. However, when the metric threshold is set properly, the number of images on

which all blobs can be extracted increases compared to the uniformly sampled image

acquisition. Furthermore, the threshold value can be made adaptive within certain

range. For instance, it can be scaled with the minimum MMBM value in the last a

few seconds. In other words, if the metric does not go below the threshold, it can be

increased on the fly. Another adaptation approach could have been using the number

of images captured in last couple of seconds. If the average frame rate drastically de-

creases, the threshold can be increased to capture slightly more blurred images. As a

final remark, MMBM triggering significantly increases percentage of sharper images.

Table 6.2: Total Captured Images and Success Ratio of Blob Extraction

Walk Mode MMBM Th. Walk Time # of Fr. # Missed Success Rate
Slow N/A 35 sec 174 85 51%
Slow 0.8 35 sec 152 37 76%
Slow 0.4 35 sec 116 37 68%
Slow 0.2 35 sec 66 19 71%

Moderate N/A 16 sec 78 39 50%
Moderate 0.8 16 sec 73 25 62%
Moderate 0.4 16 sec 56 10 82%
Moderate 0.2 16 sec 20 5 75%

Fast N/A 5 sec 26 18 31%
Fast 0.8 5 sec 20 6 70%

Drop in the number of frames for MMBM based camera triggering is shown in Ta-

ble 6.2. Capturing less number of images may seem like obtaining less information.

However, average sharpness of images also increases which corresponds to informa-

tion gain. Therefore, the number of captured images as well as their quality plays

a crucial role on the total information gain. As clearly seen in Table 6.2, number

of captured images gradually drops when MMBM threshold is set to lower values.

Because, the time instances when MMBM drops below the threshold becomes more

and more sparse and camera waits more for a suitable capture instance. In an ideal

case, exposure time, te, dominates the time slot allocated for capturing one frame (te,

tr and tf as shown in Fig. 5.1) in high fps video capture. Hence, any delay in the

image capture means irreversible image loss and sampling rate drop. The experiment
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designed in this section expresses that part of the problem too. However, there can

be cases where a camera is required to work in low sampling rate. Thus, idle time of

camera, tf , would be relatively large even in fixed sampling rate capturing mode such

as the one shown in this section. Large tf gives the opportunity to advance trigger-

ing instances of camera, instead of delaying it. By delaying the trigger for suitable

MMBM instances and advancing it (i.e. keeping tf as small as possible) the trigger

instances can be modified to lose less number of frames as well as having keeping the

sharpness of MMBM based triggering. In the best case, number of captured images

with MMBM based triggering can be the same as the number of images captured with

uniform image acquisition.
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CHAPTER 7

CONCLUSION

In this thesis, a new metric, MMBM, to evaluate camera egomotion based average

motion blur of an image was presented. Detailed derivation of it is given for rotation

only and free motion scenarios. MMBM can be computed for 6D motion of camera.

But, it is evaluated by using only gyro data in real-time for the experiments. MMBM

calculates optical flow vectors using only velocity of camera. In order to validate our

derivations MMBM is compared to a conventional optical flow algorithm. Although

the definition of MMBM involves an integral that can not be solved analytically, Rie-

mann Sum approximation is introduced to calculate it in real time. Different appli-

cation areas of MMBM are discussed. It is possible to use MMBM offline to have

motion blur level of a captured image without performing any image processing. But,

the main application pronounced in this work is externally triggering a camera to cap-

ture images at favorable time instances, i.e. MMBM based camera triggering, to cap-

ture sharper images and avoid extremely blurred ones. MMBM was used to minimize

motion blur of captured images from an onboard camera mounted on the SensoRHex

hexapod robot by externally triggering the camera only when MMBM dips below a

certain threshold and when it is monotonically decreasing. Average motion blur of

captured images is hence decreased and, more importantly, extremely blurred images

are avoided. As a consequence, computer vision algorithms such as localization can

run more efficiently. Furthermore, the implications of obtaining sharper images on

visual perception are explained with an experiment in which approximately 30-35%

increase in feature extraction performance is shown.

An industrial grade camera was was externally triggered throughout the experiments.
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That method was preferred to precisely control image capture instances and to start

image acquisition as soon as required. However, it can be possible to use a regular

camera as long as image acquisition can be started within a few milliseconds when a

camera which can be externally triggered is not available. If a capture can be quickly

started by sending commands to the camera through the data transfer cable, it can be

conveniently used for MMBM applications.

MMBM can be used in many robotics applications that suffer from motion blur,

legged robots in particular. Exploiting quasi-periodicity of a legged robot’s body

oscillations is the fundamental requirement for the applicability of MMBM based

camera triggering. If the camera is moving at constant speed, all of the possible trig-

ger instances would result in the same amount of motion blur. For example, MMBM

based camera triggering can not improve image quality of an on board camera of

plane, on the other hand, it can be conveniently used for helicopters or quadcopters

when they are dynamically maneuvering on a workspace.

Further improvements can be achieved by incorporating the motion model of a robot

or using the camera on a platform whose motion can be controlled and predetermined.

Unfortunately, SensoRHex currently does not have any such motion models and its

motion can not be rigidly controlled due to complex leg-ground interactions. If quasi

periodicity of signals can be learned, predicting near future can be possible with sig-

nal prediction methods. Fitting a model to a quasi periodic body oscillations is still

possible. But, the model would be pretty much limited. For instance such a signal

model can be fitted only when the same input signal is applied to the robot and output

oscillations does not considerably differ during experiments.

The goal to start this research is definitely achieved, even though there are still im-

provements that can be pushed further. Significant amount of motion blur can be suc-

cessfully avoided for SensoRhex’s working conditions by using our method , before it

corrupts an image. Even though, only SensoRHex is demonstrated as an experimental

platform, the mentioned methods can be applied to any camera working under oscil-

latory condition. For example, wearable cameras can be a prominent application area

of MMBM since similar running behaviours would also affect camera performance

of such devices. Yet another application can be implemented on mobile phones.

64



The remaining amount of motion blur can be deblurred using methods available in the

literature after using MMBM basd camera triggering. For instance gyro data used to

calculate MMBM can also be used to construct PSF for deconvolution based motion

blur removal. Deblurring algorithms also suffer from extremely blurred images since

the information loss would be on an irreversible level. Hence, MMBM can be used

as a safety pre-process of deblurring algorithms.

Predictive MMBM implementation would have been a prosperous contribution in

this work. Another demonstration which also includes translational motion of camera

could have enriched the experiments.
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